3.50 \(\int \frac {1}{\sqrt {-2-3 x^2+3 x^4}} \, dx\)

Optimal. Leaf size=153 \[ \frac {\sqrt {-\left (\left (3-\sqrt {33}\right ) x^2\right )-4} \sqrt {\frac {\left (3+\sqrt {33}\right ) x^2+4}{\left (3-\sqrt {33}\right ) x^2+4}} F\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{33} x}{\sqrt {-\left (\left (3-\sqrt {33}\right ) x^2\right )-4}}\right )|\frac {1}{22} \left (11-\sqrt {33}\right )\right )}{2 \sqrt {2} \sqrt [4]{33} \sqrt {\frac {1}{\left (3-\sqrt {33}\right ) x^2+4}} \sqrt {3 x^4-3 x^2-2}} \]

[Out]

1/132*EllipticF(33^(1/4)*x*2^(1/2)/(-4-x^2*(3-33^(1/2)))^(1/2),1/22*(242-22*33^(1/2))^(1/2))*(-4-x^2*(3-33^(1/
2)))^(1/2)*((4+x^2*(3+33^(1/2)))/(4+x^2*(3-33^(1/2))))^(1/2)*33^(3/4)*2^(1/2)/(3*x^4-3*x^2-2)^(1/2)/(1/(4+x^2*
(3-33^(1/2))))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {1098} \[ \frac {\sqrt {-\left (3-\sqrt {33}\right ) x^2-4} \sqrt {\frac {\left (3+\sqrt {33}\right ) x^2+4}{\left (3-\sqrt {33}\right ) x^2+4}} F\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{33} x}{\sqrt {-\left (3-\sqrt {33}\right ) x^2-4}}\right )|\frac {1}{22} \left (11-\sqrt {33}\right )\right )}{2 \sqrt {2} \sqrt [4]{33} \sqrt {\frac {1}{\left (3-\sqrt {33}\right ) x^2+4}} \sqrt {3 x^4-3 x^2-2}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[-2 - 3*x^2 + 3*x^4],x]

[Out]

(Sqrt[-4 - (3 - Sqrt[33])*x^2]*Sqrt[(4 + (3 + Sqrt[33])*x^2)/(4 + (3 - Sqrt[33])*x^2)]*EllipticF[ArcSin[(Sqrt[
2]*33^(1/4)*x)/Sqrt[-4 - (3 - Sqrt[33])*x^2]], (11 - Sqrt[33])/22])/(2*Sqrt[2]*33^(1/4)*Sqrt[(4 + (3 - Sqrt[33
])*x^2)^(-1)]*Sqrt[-2 - 3*x^2 + 3*x^4])

Rule 1098

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(Sqrt[(2*a +
(b - q)*x^2)/(2*a + (b + q)*x^2)]*Sqrt[(2*a + (b + q)*x^2)/q]*EllipticF[ArcSin[x/Sqrt[(2*a + (b + q)*x^2)/(2*q
)]], (b + q)/(2*q)])/(2*Sqrt[a + b*x^2 + c*x^4]*Sqrt[a/(2*a + (b + q)*x^2)]), x]] /; FreeQ[{a, b, c}, x] && Gt
Q[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {-2-3 x^2+3 x^4}} \, dx &=\frac {\sqrt {-4-\left (3-\sqrt {33}\right ) x^2} \sqrt {\frac {4+\left (3+\sqrt {33}\right ) x^2}{4+\left (3-\sqrt {33}\right ) x^2}} F\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{33} x}{\sqrt {-4-\left (3-\sqrt {33}\right ) x^2}}\right )|\frac {1}{22} \left (11-\sqrt {33}\right )\right )}{2 \sqrt {2} \sqrt [4]{33} \sqrt {\frac {1}{4+\left (3-\sqrt {33}\right ) x^2}} \sqrt {-2-3 x^2+3 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.07, size = 81, normalized size = 0.53 \[ -\frac {i \sqrt {-6 x^4+6 x^2+4} F\left (i \sinh ^{-1}\left (\sqrt {\frac {6}{-3+\sqrt {33}}} x\right )|\frac {1}{4} \left (-7+\sqrt {33}\right )\right )}{\sqrt {3+\sqrt {33}} \sqrt {3 x^4-3 x^2-2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/Sqrt[-2 - 3*x^2 + 3*x^4],x]

[Out]

((-I)*Sqrt[4 + 6*x^2 - 6*x^4]*EllipticF[I*ArcSinh[Sqrt[6/(-3 + Sqrt[33])]*x], (-7 + Sqrt[33])/4])/(Sqrt[3 + Sq
rt[33]]*Sqrt[-2 - 3*x^2 + 3*x^4])

________________________________________________________________________________________

fricas [F]  time = 0.81, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{\sqrt {3 \, x^{4} - 3 \, x^{2} - 2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x^4-3*x^2-2)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(3*x^4 - 3*x^2 - 2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {3 \, x^{4} - 3 \, x^{2} - 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x^4-3*x^2-2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(3*x^4 - 3*x^2 - 2), x)

________________________________________________________________________________________

maple [C]  time = 0.03, size = 84, normalized size = 0.55 \[ \frac {2 \sqrt {-\left (-\frac {3}{4}-\frac {\sqrt {33}}{4}\right ) x^{2}+1}\, \sqrt {-\left (-\frac {3}{4}+\frac {\sqrt {33}}{4}\right ) x^{2}+1}\, \EllipticF \left (\frac {\sqrt {-\sqrt {33}-3}\, x}{2}, \frac {i \sqrt {22}}{4}-\frac {i \sqrt {6}}{4}\right )}{\sqrt {-\sqrt {33}-3}\, \sqrt {3 x^{4}-3 x^{2}-2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(3*x^4-3*x^2-2)^(1/2),x)

[Out]

2/(-33^(1/2)-3)^(1/2)*(-(-3/4-1/4*33^(1/2))*x^2+1)^(1/2)*(-(-3/4+1/4*33^(1/2))*x^2+1)^(1/2)/(3*x^4-3*x^2-2)^(1
/2)*EllipticF(1/2*(-33^(1/2)-3)^(1/2)*x,1/4*I*22^(1/2)-1/4*I*6^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {3 \, x^{4} - 3 \, x^{2} - 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x^4-3*x^2-2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(3*x^4 - 3*x^2 - 2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {3\,x^4-3\,x^2-2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(3*x^4 - 3*x^2 - 2)^(1/2),x)

[Out]

int(1/(3*x^4 - 3*x^2 - 2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {3 x^{4} - 3 x^{2} - 2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x**4-3*x**2-2)**(1/2),x)

[Out]

Integral(1/sqrt(3*x**4 - 3*x**2 - 2), x)

________________________________________________________________________________________